Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Mol Cell Endocrinol ; 588: 112223, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38556160

RESUMO

Maternal malnutrition can alter developmental biology, programming health and disease in offspring. The increase in sugar consumption during the peripubertal period, a worldwide concern, also affects health through adulthood. Studies have shown that maternal exposure to a low protein diet (LPD) is associated with an increase in prostate disease with aging. However, the combined effects of maternal LPD and early postnatal sugar consumption on offspring prostate disorders were not investigated. The effects on aging were evaluated using a maternal gestational model with lactational LPD (6% protein) and sugar consumption (10%) from postnatal day (PND) 21-90, associating the consequences on ventral prostate (VP) rats morphophysiology on PND540. An increase was shown in mast cells and in the VP of the CTR + SUG and Gestational and Lactational Low Protein (GLLP) groups. In GLLP + SUG, a significant increase was shown in TGF-ß1 expression in both the systemic and intra-prostatic forms, and SMAD2/3p had increased. The study identified maternal LPD and sugar consumption as risk factors for prostatic homeostasis in senility, activating the TGFß1-SMAD2/3 pathway, a signaling pathway with potential markers for prostatic disorders.


Assuntos
Desnutrição , Fenômenos Fisiológicos da Nutrição Materna , Efeitos Tardios da Exposição Pré-Natal , Próstata , Doenças Prostáticas , Animais , Masculino , Feminino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Doenças Prostáticas/patologia , Doenças Prostáticas/etiologia , Doenças Prostáticas/metabolismo , Desnutrição/complicações , Próstata/metabolismo , Próstata/patologia , Ratos , Inflamação/patologia , Inflamação/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética , Dieta com Restrição de Proteínas/efeitos adversos , Proteína Smad2/metabolismo , Ratos Wistar , Proteína Smad3/metabolismo , Proteína Smad3/genética , Transdução de Sinais , Animais Recém-Nascidos , Mastócitos/metabolismo
2.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982719

RESUMO

Ethanol (EtOH) alters many cellular processes in yeast. An integrated view of different EtOH-tolerant phenotypes and their long noncoding RNAs (lncRNAs) is not yet available. Here, large-scale data integration showed the core EtOH-responsive pathways, lncRNAs, and triggers of higher (HT) and lower (LT) EtOH-tolerant phenotypes. LncRNAs act in a strain-specific manner in the EtOH stress response. Network and omics analyses revealed that cells prepare for stress relief by favoring activation of life-essential systems. Therefore, longevity, peroxisomal, energy, lipid, and RNA/protein metabolisms are the core processes that drive EtOH tolerance. By integrating omics, network analysis, and several other experiments, we showed how the HT and LT phenotypes may arise: (1) the divergence occurs after cell signaling reaches the longevity and peroxisomal pathways, with CTA1 and ROS playing key roles; (2) signals reaching essential ribosomal and RNA pathways via SUI2 enhance the divergence; (3) specific lipid metabolism pathways also act on phenotype-specific profiles; (4) HTs take greater advantage of degradation and membraneless structures to cope with EtOH stress; and (5) our EtOH stress-buffering model suggests that diauxic shift drives EtOH buffering through an energy burst, mainly in HTs. Finally, critical genes, pathways, and the first models including lncRNAs to describe nuances of EtOH tolerance are reported here.


Assuntos
RNA Longo não Codificante , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , RNA Longo não Codificante/genética , Etanol/farmacologia , Etanol/metabolismo
3.
Int J Mol Sci ; 23(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36499183

RESUMO

The Developmental Origins of Health and Disease (DOHaD) concept correlates early life exposure to stressor conditions with the increased incidence of non-communicable chronic diseases, including prostate cancer (PCa), throughout the life span. However, the molecular mechanisms involved in this process remain poorly understood. In this study, the deregulation of two miRNAs (rno-miR-18a-5p and rno-miR-345-3p) was described in the ventral prostate VP of old rats born to dams fed with a low protein diet (LPD) (6% protein in the diet) during gestational and lactational periods. Integrative analysis of the (VP) transcriptomic and proteomic data revealed changes in the expression profile of 14 identified predicted targets of these two DE miRNAs, which enriched terms related to post-translational protein modification, metabolism of proteins, protein processing in endoplasmic reticulum, phosphonate and phosphinate metabolism, the calnexin/calreticulin cycle, metabolic pathways, N-glycan trimming in the ER and the calnexin/calreticulin cycle, hedgehog ligand biogenesis, the ER-phagosome pathway, detoxification of reactive oxygen species, antigenprocessing-cross presentation, RAB geranylgeranylation, collagen formation, glutathione metabolism, the metabolism of xenobiotics by cytochrome P450, and platinum drug resistance. RT-qPCR validated the deregulation of the miR-18a-5p/P4HB (prolyl 4-hydroxylase subunit beta) network in the VP of older offspring as well as in the PNT-2 cells transfected with mimic miR-18a-5p. Functional in vitro studies revealed a potential modulation of estrogen receptor α (ESR1) by miR-18a-5p in PNT-2 cells, which was also confirmed in the VP of older offspring. An imbalance of the testosterone/estrogen ratio was also observed in the offspring rats born to dams fed with an LPD. In conclusion, deregulation of the miR-18a-5p/P4HB network can contribute to the developmental origins of prostate cancer in maternally malnourished offspring, highlighting the need for improving maternal healthcare during critical windows of vulnerability early in life.


Assuntos
MicroRNAs , Neoplasias da Próstata , Animais , Masculino , Ratos , Perfilação da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Próstata/genética , Proteômica , Transcriptoma
4.
Int J Mol Sci ; 23(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36012492

RESUMO

Prostate cancer (PCa) is the second most common cause of mortality among men. Tumor secretome is a promising strategy for understanding the biology of tumor cells and providing markers for disease progression and patient outcomes. Here, transcriptomic-based secretome analysis was performed on the PCa tumor transcriptome of Genetically Engineered Mouse Model (GEMM) Pb-Cre4/Ptenf/f mice to identify potentially secreted and membrane proteins-PSPs and PMPs. We combined a selection of transcripts from the GSE 94574 dataset and a list of protein-coding genes of the secretome and membrane proteome datasets using the Human Protein Atlas Secretome. Notably, nine deregulated PMPs and PSPs were identified in PCa (DMPK, PLN, KCNQ5, KCNQ4, MYOC, WIF1, BMP7, F3, and MUC1). We verified the gene expression patterns of Differentially Expressed Genes (DEGs) in normal and tumoral human samples using the GEPIA tool. DMPK, KCNQ4, and WIF1 targets were downregulated in PCa samples and in the GSE dataset. A significant association between shorter survival and KCNQ4, PLN, WIF1, and F3 expression was detected in the MSKCC dataset. We further identified six validated miRNAs (mmu-miR-6962-3p, mmu-miR- 6989-3p, mmu-miR-6998-3p, mmu-miR-5627-5p, mmu-miR-15a-3p, and mmu-miR-6922-3p) interactions that target MYOC, KCNQ5, MUC1, and F3. We have characterized the PCa secretome and membrane proteome and have spotted new dysregulated target candidates in PCa.


Assuntos
MicroRNAs , Neoplasias da Próstata , Animais , Biomarcadores/metabolismo , Progressão da Doença , Humanos , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteoma/genética , Proteoma/metabolismo , Secretoma
5.
Environ Toxicol ; 37(9): 2314-2323, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35661558

RESUMO

The possibility of chemical contamination is an important issue to consider when designing a cell therapy strategy. Both bisphenol A (BPA) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are among the most environmentally relevant endocrine disrupting chemicals (EDCs, compounds with a high affinity for adipose tissue) recently studied. Adipose-derived stem cells (ASCs) are mesenchymal stromal cells (MSCs) obtained from adipose tissue widely used in regenerative medicine to prevent and treat diseases in several tissues and organs. Although the experimental use of tissue-engineered constructs requires careful analysis for approval and implantation, there has been a recent increase in the number of approved clinical trials for this promising strategy. This study aimed to evaluate cell viability, apoptosis, DNA damage, and the adipogenic or osteogenic differentiation potential of rat adipose-derived stem cells (rASCs) exposed to previously established non-cytotoxic doses of BPA and TCDD in vitro. Results demonstrated that 10 µM of BPA and 10 nM of TCDD were able to significantly reduce cell viability, while all exposure levels resulted in DNA damage, although did not increase the apoptosis rate. According to the analysis of adipogenic differentiation, 1 µM of BPA induced the significant formation of oil droplets, suggesting an increased adipocyte differentiation, while both 10 µM of BPA and 10 nM of TCDD decreased adipocyte differentiation. Osteogenic differentiation did not differ among the treatments. As such, BPA and TCDD in the concentrations tested can modify important processes in rASCs such as cell viability, adipogenic differentiation, and DNA damage. Together, these findings prove that EDCs play an important role as contaminants, putatively interfering in cell differentiation and thus impairing the therapeutic use of ASCs.


Assuntos
Dibenzodioxinas Policloradas , Adipócitos , Tecido Adiposo , Animais , Compostos Benzidrílicos , Diferenciação Celular , Osteogênese , Fenóis , Dibenzodioxinas Policloradas/toxicidade , Ratos , Células-Tronco
6.
Front Mol Biosci ; 8: 614728, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34820418

RESUMO

The SARS-CoV-2 is the causative agent of the COVID-19 pandemic. The data available about COVID-19 during pregnancy have demonstrated placental infection; however, the mechanisms associated with intrauterine transmission of SARS-CoV-2 is still debated. Intriguingly, while canonical SARS-CoV-2 cell entry mediators are expressed at low levels in placental cells, the receptors for viruses that cause congenital infections such as the cytomegalovirus and Zika virus are highly expressed in these cells. Here we analyzed the transcriptional profile (microarray and single-cell RNA-Seq) of proteins potentially interacting with coronaviruses to identify non- canonical mediators of SARS-CoV-2 infection and replication in the placenta. Despite low levels of the canonical cell entry mediators ACE2 and TMPRSS2, we show that cells of the syncytiotrophoblast, villous cytotrophoblast, and extravillous trophoblast co-express high levels of the potential non-canonical cell-entry mediators DPP4 and CTSL. We also found changes in the expression of DAAM1 and PAICS genes during pregnancy, which are translated into proteins also predicted to interact with coronaviruses proteins. These results provide new insight into the interaction between SARS-CoV-2 and host proteins that may act as non-canonical routes for SARS-CoV-2 infection and replication in the placenta cells.

7.
Antibiotics (Basel) ; 10(10)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34680783

RESUMO

The interaction between bacteriophages and integrins has been reported in different cancer cell lines, and efforts have been undertaken to understand these interactions in tumor cells along with their possible role in gene alterations, with the aim to develop new cancer therapies. Here, we report that the non-specific interaction of T4 and M13 bacteriophages with human PC-3 cells results in differential migration and varied expression of different integrins. PC-3 tumor cells (at 70% confluence) were exposed to 1 × 107 pfu/mL of either lytic T4 bacteriophage or filamentous M13 bacteriophage. After 24 h of exposure, cells were processed for a histochemical analysis, wound-healing migration assay, and gene expression profile using quantitative real-time PCR (qPCR). qPCR was performed to analyze the expression profiles of integrins ITGAV, ITGA5, ITGB1, ITGB3, and ITGB5. Our findings revealed that PC-3 cells interacted with T4 and M13 bacteriophages, with significant upregulation of ITGAV, ITGA5, ITGB3, ITGB5 genes after phage exposure. PC-3 cells also exhibited reduced migration activity when exposed to either T4 or M13 phages. These results suggest that wildtype bacteriophages interact non-specifically with PC-3 cells, thereby modulating the expression of integrin genes and affecting cell migration. Therefore, bacteriophages have future potential applications in anticancer therapies.

8.
Int J Mol Sci ; 22(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34445387

RESUMO

Prostate cancer (PCa) is the leading cause of cancer-associated mortality in men, and new biomarkers are still needed. The expression pattern and protein tissue localization of proteoglycans of the syndecan family (SDC 1-4) and syntenin-1 (SDCBP) were determined in normal and prostatic tumor tissue from two genetically engineered mouse models and human prostate tumors. Studies were validated using SDC 1-4 and SDCBP mRNA levels and patient survival data from The Cancer Genome Atlas and CamCAP databases. RNAseq showed increased expression of Sdc1 in Pb-Cre4/Ptenf/f mouse Pca and upregulation of Sdc3 expression and downregulation of Sdc2 and Sdc4 when compared to the normal prostatic tissue in Pb-Cre4/Trp53f/f-;Rb1f/f mouse tumors. These changes were confirmed by immunohistochemistry. In human PCa, SDC 1-4 and SDCBP immunostaining showed variable localization. Furthermore, Kaplan-Meier analysis showed that patients expressing SDC3 had shorter prostate-specific survival than those without SDC3 expression (log-rank test, p = 0.0047). Analysis of the MSKCC-derived expression showed that SDC1 and SDC3 overexpression is predictive of decreased biochemical recurrence-free survival (p = 0.0099 and p = 0.045, respectively), and SDC4 overexpression is predictive of increased biochemical recurrence-free survival (p = 0.035). SDC4 overexpression was associated with a better prognosis, while SDC1 and SDC3 were associated with more aggressive tumors and a worse prognosis.


Assuntos
Perfilação da Expressão Gênica/métodos , Neoplasias da Próstata/patologia , Sindecana-1/genética , Sindecana-3/genética , Sindecana-4/genética , Idoso , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Transplante de Neoplasias , Prognóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Análise Serial de Proteínas , Análise de Sequência de RNA , Análise de Sobrevida , Sindecana-1/metabolismo , Sindecana-3/metabolismo , Sindecana-4/metabolismo , Sinteninas/genética , Sinteninas/metabolismo
9.
Histol Histopathol ; 36(8): 853-867, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33843034

RESUMO

Maternal protein restriction affects postnatal skeletal muscle physiology with impacts that last through senility. To investigate the morphological and molecular characteristics of skeletal muscle in aging rats subjected to maternal protein restriction, we used aged male rats (540 days old) born of dams fed a protein restricted diet (6% protein) during pregnancy and lactation. Using morphological, immunohistochemical and molecular analyses, we evaluated the soleus (SOL) and extensor digitorum longus (EDL) muscles, muscle fiber cross-sectional area (CSA) (n=8), muscle fiber frequency (n=5) and the gene expression (n=8) of the oxidative markers (succinate dehydrogenase-Sdha and citrate synthase-CS) and the glycolytic marker (lactate dehydrogenase-Ldha). Global transcriptome analysis (n=3) was also performed to identify differentially regulated genes, followed by gene expression validation (n=8). The oxidative SOL muscle displayed a decrease in muscle fiber CSA (*p<0.05) and in the expression of oxidative metabolism marker Sdha (***p<0.001), upregulation of the anabolic Igf-1 (**p<0.01), structural Chad (**p<0.01), and Fmod (*p<0.05) genes, and downregulation of the Hspb7 (**p<0.01) gene. The glycolytic EDL muscle exhibited decreased IIA (*p<0.05) and increased IIB (*p<0.05) fiber frequency, and no changes in muscle fiber CSA or in the expression of oxidative metabolism genes. In contrast, the gene expression of Chad (**p<0.01) was upregulated and the Myog (**p<0.01) gene was downregulated. Collectively, our morphological, immunohistochemical and molecular analyses showed that maternal protein restriction induced changes in the expression of metabolic, anabolic, myogenic, and structural genes, mainly in the oxidative SOL muscle, in aged offspring rats.


Assuntos
Envelhecimento/metabolismo , Dieta com Restrição de Proteínas , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Músculo Esquelético/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Feminino , Expressão Gênica , Masculino , Gravidez , Ratos , Ratos Sprague-Dawley
10.
J Ethnopharmacol ; 271: 113832, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33460758

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Baccharis trimera (Less.) DC known as "carqueja" in Brazil has been acknowledged as a medicinal plant in folk medicine for the treatment of stomach aches and gastrointestinal disorders. AIM OF THE STUDY: The present study aimed to evaluate the gastroprotective and healing effects of essential oil from B. trimera (EOBT) against gastric ulcer lesions caused by absolute ethanol and acetic acid, respectively, and to identify the mechanism of action of this essential oil in male Wistar rats. MATERIALS AND METHODS: The plant material used to obtain EOBT was collected in the southern region of Brazil and was analyzed by chromatography-mass spectrometry (GCMS) demonstrate its characteristic chemical composition, with carquejyl acetate as its main component. Different doses of EOBT (50, 100, and 200 mg/kg) were administered orally in male Wistar rats as an acute treatment against absolute ethanol-induced gastric lesions. The gastric healing effect of EOBT (100 mg/kg) was evaluated once a day after 7, 10, and 14 days of treatment. After treatment, the stomachs of rats from all groups were collected to measure the lesion area (mm2), the activity of myeloperoxidase (MPO), and the relative expression of caspases -3, -8, -9, cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), vascular endothelial growth factor (VEGF), and epidermal growth factor (EGF). The zymography method was used to elucidate the activity of matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9) in the healing action of EOBT. We also analyzed toxicological parameters (body weight evolution and biochemical parameters) that could result after treatment with this essential oil for 14 days. RESULTS: Pretreatment with EOBT (100 and 200 mg/kg) significantly decreased the severity of gastric damage induced by absolute ethanol and decreased MPO activity in gastric tissue. After 10 and 14 days of treatment with EOBT (100 mg/kg) once a day, the lesion area was significantly reduced by 61% and 65.5%, respectively, compared to the negative control group. The gastric healing effect of EOBT was followed by a decrease in the expression of COX-1 compared to that in the negative control group. Notably, treatment with EOBT for 14 days increased the expression of VEGF compared to that using an anti-ulcer drug (lansoprazole). Additionally, analyses of MMP-2 and MMP-9 activities in the gastric mucosa confirmed the accelerated gastric healing effect of EOBT, with a significant decrease in the activity of pro-MMP-2. No sign of toxicity was observed after treatment with EOBT for 14 consecutive days. CONCLUSION: These findings indicated that EOBT was effective in preventing and accelerating ulcer healing by decreasing MPO activity, increasing VEGF expression, and decreasing MMP-2 activity. These actions collectively contribute to the rapid recovery of gastric mucosa following treatment with EOBT, without any observed toxicity.


Assuntos
Antiulcerosos/farmacologia , Baccharis/química , Metaloproteinase 2 da Matriz/metabolismo , Óleos Voláteis/farmacologia , Úlcera Gástrica/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ácido Acético/toxicidade , Animais , Antiulcerosos/uso terapêutico , Antiulcerosos/toxicidade , Brasil , Caspases/metabolismo , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Etanol/toxicidade , Mucosa Gástrica/efeitos dos fármacos , Lansoprazol/farmacologia , Lansoprazol/uso terapêutico , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Medicina Tradicional , Proteínas de Membrana/metabolismo , Óleos Voláteis/uso terapêutico , Óleos Voláteis/toxicidade , Tamanho do Órgão/efeitos dos fármacos , Ratos Wistar , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/metabolismo , Úlcera Gástrica/patologia
11.
Life Sci ; 264: 118693, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33130082

RESUMO

AIMS: Because an adequate protein supply is detrimental for the maintenance of folliculogenesis and ovulation, we evaluated the impact of maternal low protein diet on nutritional parameters, estrous cycle, ovarian histomorphometry, and on the expression of metabolic and survival signaling molecules in different follicular stages. MAIN METHODS: Twenty Wistar pregnant rats were divided into two groups: the normoprotein (NP) group, composed of animals that received 17% protein, and a low-protein (LP) group, composed of animals that received 6% protein during gestation and lactation period. After weaning, female rats were fed with standard diet until the 120-days-old. KEY FINDINGS: LP animals showed reduced body mass index, total body weight, energy intake, feed efficiency, and visceral fat. The ovarian tissue presented vascular congestion and fat accumulation in the medulla, followed by a significant reduction in the amount of primordial and primary follicles. In addition, the number of atretic follicles was higher in LP than in NP animals. Maternal undernutrition also resulted in increased levels of estradiol (E2) and progesterone (P4) while testosterone (T) was unchanged in the offspring. Although discrete changes in p38MAPK and in PI3K-AKT-mTOR immunostaining were observed in the ovarian follicles and corpus luteum in LP, no differences were found at their protein levels. SIGNIFICANCE: Maternal protein restriction alters estrous cycle and histomorphometry of the offspring's ovary without changing the levels of intracellular regulatory molecules in adulthood. These morphofunctional changes may alter reproductive performance in female offspring, highlighting maternal dietary conditions as an important factor for offspring reproductive health.


Assuntos
Envelhecimento/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Dieta com Restrição de Proteínas , Ovário/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Ciclo Estral , Feminino , Hormônios Esteroides Gonadais/metabolismo , Masculino , Folículo Ovariano/patologia , Ratos Wistar , Transdução de Sinais
12.
Aging (Albany NY) ; 12(20): 19954-19978, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33049715

RESUMO

The developmental origins of health and disease concept links adult diseases with early-life exposure to inappropriate environmental conditions. Intrauterine and postnatal malnutrition may lead to an increased incidence of type 2 diabetes, obesity, and cardiovascular diseases. Maternal malnutrition (MM) has also been associated with prostate carcinogenesis. However, the molecular mechanisms associated with this condition remain poorly understood. Using a proteomic analysis, we demonstrated that MM changed the levels of proteins associated with growth factors, estrogen signaling, detoxification, and energy metabolism in the prostate of both young and old rats. These animals also showed increased levels of molecular markers of endoplasmic reticulum function and histones. We further performed an in silico analysis that identified commonly deregulated proteins in the ventral prostate of old rats submitted to MM with a mouse model and patients with prostate cancer. In conclusion, our results demonstrated that estrogenic signaling pathways, endoplasmic reticulum functions, energy metabolism, and molecular sensors of protein folding and Ca2+ homeostasis, besides histone, and RAS-GTPase family appear to be involved in this process. Knowledge of these factors may raise discussions regarding the role of maternal dietary intervention as a public policy for the lifelong prevention of chronic diseases.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Carcinogênese/metabolismo , Dieta com Restrição de Proteínas , Desnutrição/complicações , Fenômenos Fisiológicos da Nutrição Materna , Neoplasias da Próstata/etiologia , Proteoma , Fatores Etários , Ração Animal , Animais , Calreticulina/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Desnutrição/metabolismo , Desnutrição/fisiopatologia , Espectrometria de Massas , Neoplasias da Próstata/metabolismo , Mapas de Interação de Proteínas , Proteômica , Ratos , Transdução de Sinais
13.
J Pineal Res ; 69(4): e12693, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32910542

RESUMO

Melatonin is a ubiquitous molecule with a broad spectrum of functions including widespread anti-cancer activities. Identifying how melatonin intervenes in complex molecular signaling at the gene level is essential to guide proper therapies. Using meta-analysis approach, herein we examined the role of melatonin in regulating the expression of 46 microRNAs (miRNAs) and their target genes in breast, oral, gastric, colorectal, and prostate cancers, and glioblastoma. The deregulated miRNA-associated target genes revealed their involvement in the regulation of cellular proliferation, differentiation, apoptosis, senescence, and autophagy. Melatonin changes the expression of miRNA-associated genes in breast, gastric, and oral cancers. These genes are associated with cellular senescence, the hedgehog signaling pathway, cell proliferation, p53 signaling, and the hippo signaling pathway. Conversely, colorectal and prostate cancers as well as glioblastoma and oral carcinoma present a clear pattern of less pronounced changes in the expression of miRNA-associated genes. Most notably, colorectal cancer displayed a unique molecular change in response to melatonin. Considering breast cancer network complexity, we compared the genes found during the meta-analysis with RNA-Seq data from breast cancer-bearing mice treated with melatonin. Mechanistically, melatonin upregulated genes associated with immune responses and apoptotic processes, whereas it downregulated genes involved in cellular aggressiveness/metastasis (eg, mitosis, telomerase activity, and angiogenesis). We further characterized the expression profile of our gene subsets with human breast cancer and found eight upregulated genes and 16 downregulated genes that were appositively correlated with melatonin. Our results pose a multi-dimension network of tumor-associated genes regulated by miRNAs potentially targeted by melatonin.


Assuntos
Regulação Neoplásica da Expressão Gênica , Melatonina/metabolismo , MicroRNAs , Neoplasias , RNA Neoplásico , Animais , Humanos , MicroRNAs/biossíntese , MicroRNAs/genética , Neoplasias/genética , Neoplasias/metabolismo , RNA Neoplásico/biossíntese , RNA Neoplásico/genética
14.
Reprod Toxicol ; 96: 209-215, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32682779

RESUMO

This study was performed to evaluate the effect of monobutyl phthalate (MBP) on GPR30-activated pathways in Sertoli cells. Additionally, we tested if GIM-1 (Panax ginseng metabolite) modulates MBP action. Human Sertoli cells (HSeC lineage) were exposed to MBP and/or GIM-1 for 30 min, 1, 12, and 48 h. Four experimental treatments were performed: control (DEMEM/F12 medium), MBP, GIM-1, and MBP + GIM-1. The results indicate that MBP activates GPR30, PKA, Src, EGFR, and the ERK1/2 proteins, while GIM-1 inhibits PKA, Src, ERK1/2, and the AKT pathway. MBP also enhances Cofilin expression, decreasing F-actin intensity on the cell surface in a short time. The combined exposure demonstrated a functional antagonism between compounds. Collectively, these data show that MBP activates GPR30 in Sertoli cells, and GIM-1 modulates this response, playing a protective role in Sertoli cells exposed to MBP.


Assuntos
Citoproteção/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Panax , Ácidos Ftálicos/toxicidade , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células de Sertoli/efeitos dos fármacos , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Células de Sertoli/metabolismo , Quinases da Família src/metabolismo
15.
Materials (Basel) ; 13(12)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560388

RESUMO

Fibrin scaffold fits as a provisional platform promoting cell migration and proliferation, angiogenesis, connective tissue formation and growth factors stimulation. We evaluated a unique heterologous fibrin biopolymer as scaffold to mesenchymal stem cells (MSCs) to treat a critical-size bone defect. Femurs of 27 rats were treated with fibrin biopolymer (FBP); FBP + MSCs; and FBP + MSC differentiated in bone lineage (MSC-D). Bone repair was evaluated 03, 21 and 42 days later by radiographic, histological and scanning electron microscopy (SEM) imaging. The FBP + MSC-D association was the most effective treatment, since newly formed Bone was more abundant and early matured in just 21 days. We concluded that FBP is an excellent scaffold for MSCs and also use of differentiated cells should be encouraged in regenerative therapy researches. The FBP ability to maintain viable MSCs at Bone defect site has modified inflammatory environment and accelerating their regeneration.

16.
J Ethnopharmacol ; 256: 112793, 2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32240780

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Terminalia catappa L. (Combretaceae), known as "amendoeira da praia" in Brazil, has been recognized as a medicinal plant in folk medicine for the treatment of gastrointestinal disorders and other inflammatory conditions. The present study aimed to investigate the preventive and healing effects of the infusion of leaves of T. catappa (ILTC) against gastric lesions caused by ischemia and reperfusion (I/R) injury and characterize its mechanism of action in the gastric mucosa of rats. MATERIALS AND METHODS: Different doses (30, 100, and 300 mg/kg) of ILTC were orally administered as acute and subacute treatments against I/R-induced gastric lesion in rats. After treatment, the stomach of rats was collected to measure the lesion area, redox parameters malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and reduced glutathione (GSH) and inflammatory parameters myeloperoxidase activity (MPO), interleukin 1ß (IL-1ß) and tumor necrosis factor α (TNF-α). The activities of matrix metalloproteinases 2 and 9 (MMPs 2 and 9) were assessed by zymography method to clarify the mechanisms of the healing acceleration promoted by ILTC. RESULTS: Pretreatment with ILTC (100 mg/kg) was effective in preventing the aggravation of lesions in the acute model by reducing MPO activity by 38% relative to control group, despite the lack of clarity of this action at the macroscopical level at the lesion area (p < 0.05). After three days of treatment with ILTC (30 and 100 mg/kg), this infusion significantly reduced the lesion area by 95% and 89%, respectively, compared the control (p < 0.05). The gastric healing effect of all doses of ILTC was followed by a reduction in MPO activity (decrease by 70-78%). Compared to the negative control, an improvement in gastric healing owing to treatment with ILTC was observed and this was followed by an increase in MMP-2 (20-47%) (p < 0.05). CONCLUSION: Three days of treatment with ILTC could accelerate the healing process in I/R-induced lesions in rats. By decreasing MPO levels, ILTC enabled the action of MMP-2, which led to tissue recovery in the gastric mucosa.


Assuntos
Antiulcerosos/farmacologia , Extratos Vegetais/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Úlcera Gástrica/tratamento farmacológico , Estômago/efeitos dos fármacos , Terminalia/química , Cicatrização/efeitos dos fármacos , Animais , Araquidonato 15-Lipoxigenase/metabolismo , Catalase/metabolismo , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/metabolismo , Masculino , Medicina Tradicional/métodos , Camundongos , Camundongos Endogâmicos C57BL , Fitoterapia/métodos , Folhas de Planta/química , Plantas Medicinais/química , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Úlcera Gástrica/metabolismo , Superóxido Dismutase/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-31723344

RESUMO

BACKGROUND: Bone tissue repair remains a challenge in tissue engineering. Currently, new materials are being applied and often integrated with live cells and biological scaffolds. The fibrin biopolymer (FBP) proposed in this study has hemostatic, sealant, adhesive, scaffolding and drug-delivery properties. The regenerative potential of an association of FBP, biphasic calcium phosphate (BCP) and mesenchymal stem cells (MSCs) was evaluated in defects of rat femurs. METHODS: Adult male Wistar rats were submitted to a 5-mm defect in the femur. This was filled with the following materials and/or associations: BPC; FBP and BCP; FBP and MSCs; and BCP, FBP and MSCs. Bone defect without filling was defined as the control group. Thirty and sixty days after the procedure, animals were euthanatized and subjected to computed tomography, scanning electron microscopy and qualitative and quantitative histological analysis. RESULTS: It was shown that FBP is a suitable scaffold for bone defects due to the formation of a stable clot that facilitates the handling and optimizes the surgical procedures, allowing also cell adhesion and proliferation. The association between the materials was biocompatible. Progressive deposition of bone matrix was higher in the group treated with FBP and MSCs. Differentiation of mesenchymal stem cells into osteogenic lineage was not necessary to stimulate bone formation. CONCLUSIONS: FBP proved to be an excellent scaffold candidate for bone repair therapies due to application ease and biocompatibility with synthetic calcium-based materials. The satisfactory results obtained by the association of FBP with MSCs may provide a more effective and less costly new approach for bone tissue engineering.

18.
Reprod Toxicol ; 86: 68-75, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30965081

RESUMO

This study evaluated oxidative stress markers in Human Sertoli cells cultivated on Geltrex® and exposed to Monobutyl Phthalate (MBP), and the potential cytoprotective role of GIM-1 on the antioxidant response. Exposure was performed at 30 min, 1, 12 and 48 h into 4 groups: control, MBP (10µM), GIM-1 (0,05µM) and MBP + GIM-1. Morphology was evaluated. Antioxidant enzymes were analyzed by colorimetric method; NRF-2, SIRT-1, 8- OHdG and Cleaved Caspase-3 by Western Blot. Larger spaces between cells were shown in MBP treatment; GIM-1 was similar to Control and MBP + GIM-1 showed an intermediate aspect. MBP reduced enzymatic activity of all enzymes and NRF-2 expression, increasing cleaved Caspase-3 expression; while GIM-1 increased antioxidants markers alone and attenuated MPB effects in MBP + GIM-1. MBP induced deleterious effects on Sertoli cells, increasing the oxidative stress, apoptosis and modifying their distribution in culture; however, GIM-1 acted as an important cytoprotective agent reversing our attenuating MBP effects.


Assuntos
Panax , Ácidos Ftálicos/toxicidade , Substâncias Protetoras/farmacologia , Células de Sertoli/efeitos dos fármacos , 8-Hidroxi-2'-Desoxiguanosina/metabolismo , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Catalase/metabolismo , Linhagem Celular , Citoproteção/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Humanos , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Células de Sertoli/metabolismo , Sirtuína 1/metabolismo , Superóxido Dismutase/metabolismo
19.
J Pharm Pharmacol ; 71(7): 1065-1071, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30919959

RESUMO

OBJECTIVES: This study evaluated raloxifene (ral) effects on LNCaP prostate tumour cells modulating the activity of GPER1/GPR30 receptors. METHODS: LNCaP cells were submitted for 40/120 min and 12 h to the following treatments: C: RPMI + DMSO; R: RPMI + Ral; G: RPMI + Ral + G15 (GPER1 antagonist). Trypan blue staining measured cell viability. Migratory potential (12 h) was measured by transwell migration test in translucent inserts, which were then stained with DAPI and analysed under a fluorescence microscope for quantification. Cells from 40- and 120-min treatments were subjected to protein extraction to the study of AKT, pAKT, ERK, pERK, ERß and SIRT1. KEY FINDINGS: There is a reduction in cellular viability in R compared to C at all evaluated times, and an increased cell viability in G when compared to R; cell viability was similar in C and G in all times studied. The migration assay demonstrated a significant decrease in migration potential of tumour cells in R compared to C and G. Ral treatment reduced pERK expression and increased pAKT in the treated groups after 40 min, pointing out to an antiproliferative and apoptotic effect in the GPER1-controlled rapid-effect pathways. CONCLUSIONS: Raloxifene was able to modulate GPER1 in LNCaP prostate tumour cells, decreasing cell viability and their migratory potential.


Assuntos
Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Cloridrato de Raloxifeno/farmacologia , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Linhagem Celular Tumoral , Humanos , Masculino , Pessoa de Meia-Idade , Próstata/efeitos dos fármacos , Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais
20.
Sci Rep ; 9(1): 3761, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842587

RESUMO

Telocytes are CD34-positive cells with a fusiform cell body and long, thin cytoplasmic projections called telopodes. These cells were detected in the stroma of various organs, including the prostate. The prostate is a complex gland capable of undergoing involution due to low testosterone levels; and this condition can be reversed with testosterone replacement. Telocyte function in the mature prostate remains to be dermined, and it is not known whether telocytes can take place in tissue remodeling during prostate involution and regrowth. The present study employed structural, ultrastructural and immunohistochemical methods to investigate the telocyte's phenotypes in the ventral prostate (VP) from control (CT), castrated (CS) and testosterone replacement (TR) groups of adult male Wistar rats. Telocytes were found in the subepithelial, perimuscular and interstitical regions around glandular acini. Telocytes from CT animals have condensed chromatin and long and thin telopodes. In CS group, telocytes appeared quiescent and exhibited layers of folded up telopodes. After TR, telocytes presented loose chromatin, abundant rough endoplasmic reticulum and enlarged telopodes, closely associated with bundles of collagen fibrils. We called these cells "telocytes with a synthetic phenotype". As testosterone levels and glandular morphology returned toward to the CT group parameters, after 10 days of TR, these telocytes progressively switched to the normal phenotype. Our results demonstrate that telocytes exhibit phenotypic plasticity upon androgen manipulation and interact with fibroblast and smooth muscle cells to maintain glandular architecture in control animals and during tissue remodeling after hormonal manipulation.


Assuntos
Próstata/citologia , Telócitos/citologia , Propionato de Testosterona/administração & dosagem , Animais , Antígenos CD34/metabolismo , Masculino , Orquiectomia , Próstata/efeitos dos fármacos , Próstata/crescimento & desenvolvimento , Próstata/metabolismo , Ratos , Ratos Wistar , Telócitos/efeitos dos fármacos , Telócitos/metabolismo , Testosterona/sangue , Propionato de Testosterona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...